\qquad

C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Theory of Computation
Subject Code: 4TE06TOC1
Branch: B.Tech (CE)
Semester: 6
Date: 04/05/2018
Time : 02:30 To 05:30
Marks : 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:
a) Find the grammar for language $\mathrm{L}=\left\{\mathrm{a}^{2 \mathrm{n}} \mathrm{bc}\right.$, wheren $\left.>1\right\}$
b) What is formal language?
c) CFL are not closed under intersection and complementation: State true or false
d) What is parser?
e) When is a string accepted by PDA?
f) Give an example of deterministic CFL.
g) List out special features of Turing machines.
h) What are recursive enumerable languages and recursive sets?
i) Define: Alphabet and String
j) What is a universal language?
k) What is parse tree?
l) Define: Finite Automata
m) What is kleene closure?
n) What is NP complete problem?

Attempt any four questions from $\mathbf{Q}-2$ to $\mathbf{Q - 8}$

Q-2 Attempt all questions

(a) Prove that $\sqrt{ } 2$ is Irrational by method of Contradiction.
(b) Using Mathematical induction prove that $2^{3 n}-3^{n}$ is divisible by 5 is true for all natural numbers.
(c) Compare NFA, DPDA and NPDA

Q-3 Attempt all question
(a) Prove that following CFG is Ambiguous and convert it into unambiguous.

S -> S + S $\mid \mathrm{S}$ * $\mathrm{S}|(\mathrm{S})| \mathrm{a}$
(b) Find the1 language generated by:

S->0S1|0A|0|1B|1
A->0A|0
B->1B|1
(c) Write Regular Expressions for following
i. The language of all strings in $\{0,1\}^{*}$ that do not end with 11 .
ii. The language of all strings containing both 101 and 010 as substrings.

Q-4 Attempt all questions

(a) Define Push Down Automata (PDA). Draw PDA accepting strings of Brackets like following.

$$
\begin{equation*}
\mathrm{S} \text {-> SS |\{S\}|[S]| } \Lambda \tag{7}
\end{equation*}
$$

(b) Find minimum state FA recognizing the language corresponding to following R.E.
i. $\left(0^{*} 10+1 * 0\right)(01)^{*}$
ii. $(010)^{*} 1+\left(1^{*} 0\right)^{*}$

Q-5 Attempt all questions
(a) State and prove Arden's theorem.
(b) What is pumping lemma? Use the pumping lemma to show that the following
language is not regular:
$\mathrm{L}=\left\{\mathrm{xy} \mid \mathrm{x}, \mathrm{y}\right.$ is $\{0,1\}^{*}$ and y is either x or $\left.\mathrm{x}^{\mathrm{r}}\right\}$

Q-6 Attempt all questions

(a) For the following CFG, Find Chomsky normal form

S->AACD, A->aAb| , C-> aC|a, D->aDa|bDb|
(b) Define NFA $-\Lambda$. Explain how to convert NFA $-\Lambda$ into NFA and FA with

Suitable example.

Q-7

Attempt all questions

(a) Design a Turing machines to copy strings.
(b) Given a CFG, $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}\},\{0,1\}, \mathrm{P}, \mathrm{S})$ with P as follows
$S->0 B \mid 1 A \quad A$-> $0 S|1 A A| 0 \quad B->1 S|0 B B| 1$
Design a PDA M corresponding to CFG, G. Show that the string 0001101110 belongs to CFL , L(G).

Q-8 Attempt all questions
(a) Define functions by Primitive Recursion. Show that the function $f(x, y)=x+y$ is Primitive recursive.
(b) Explain Universal Turing Machine and Halting Problem.

